#include <math.h>
#include <stdio.h>
#include <vector>
using namespace std;
using F_matrix = vector<vector<double>>;// matrix store raw vectors
void vectorShow(vector<double> v) {
for (int i = 0; i < v.size(); i ++) { printf("%10.4f", v[i]); }
printf("\n");
}
void matrixShow(F_matrix matrix) {
for (int j = 0; j < matrix.size(); j ++) { vectorShow(matrix[j]); }
printf("\n");
}
F_matrix arrayClone(double *array, int w, int h) {// copy array elements one by one
F_matrix temp(h);
for (int i = 0; i < h; i++) {
temp[i].resize(w);
for (int n = 0; n < w; n++) { temp[i][n]= *array ++; }
}
return temp;
}
vector<double> powerEigen(F_matrix &x, int iterations=100, double threshold=1e-16){
int rank = x.size();
if (rank != x[0].size()) return vector<double>(0);
double lambda = 0;
vector<double> y(rank);
vector<double> b(x[0]);// copy 1st vector in x, so that 2nd iteration will have 1st positive value.
for (int k = 0; k < iterations; k ++) {
for (int j = 0; j < rank; j++) { // ŷ = x[j] • b̂
double temp = 0; // Σ x[j][i]*b[i]
for (int i = 0; i < rank; i++) { temp += x[j][i] * b[i]; }
y[j] = temp;
}
double norm2y = 0; // norm2y = ||ŷ||₂
lambda = 0;
for(int i = 0; i < rank; i ++) {
norm2y += y[i] * y[i]; // ||ŷ||₂ = √|ŷᵗŷ| = √Σ(y[i]*y[i])
lambda += b[i] * y[i]; // λ = b•y; => eigenvalue
}
norm2y = sqrt(norm2y);
double dx = 0; // |dx̂|² = Σ(dx[i]²)
for (int i = 0; i < rank; i ++) {// dx̂ = ŷ - λ*b̂;
double temp = y[i] - lambda * b[i];
dx += temp * temp;
}
for (int i = 0; i < rank ; i ++) {// b̂ = ŷ/sqrt(ŷᵗŷ) => eigenvector
b[i] = y[i] / norm2y;
}
if (dx < threshold) break; // dx = sqrt(dx); => no need
}
vector<double> v;// return eigenvalue and eigenvector in one vector
v.push_back(lambda);
for(int i = 0; i < rank ; i ++) { v.push_back(b[i]); }
return v;
}
int main(int argc, char **argv) {
double a[] = {
1, 2, 3, 4,
4, 5, 6, 2,
17, 8, 9, 3,
14, 7, 5, 6
};
F_matrix A = arrayClone(a, 4, 4);
matrixShow(A);
vector<double> v1 = powerEigen(A);// power method to find 1st eigenvalue/eigenvector pair
vectorShow(v1);
double lambda = v1[0];
for (int i = 0; i < A.size(); i++) A[i][i] -= lambda;
vector<double> v2 = powerEigen(A);// power shift method to find 2nd eigenvalue/eigenvector pair
for (int i = 0; i < A.size(); i++) A[i][i] += lambda; // matrix A restore back
v2[0] += v1[0]; // eigenvalue restore back
vectorShow(v2);
}
沒有留言:
張貼留言