2025年4月3日 星期四

使用 python 簡單實現多 cpu 平行處理

 import multiprocessing as mp
import time
def iso_task(k):
    print(f"task {k} @{time.time()} sec: sleep for 1 second")
    time.sleep(1)
    print(f"task {k} @{time.time()} sec: finish.")

n = mp.cpu_count()
print(f"Total CPUs = {n}")
tasks = []
start_time = time.time()

for i in range(n): # prepare all tasks to run
    task = mp.Process(target=iso_task, args=(i,))
    tasks.append(task)    
for i in range(n): # fire all tasks at the same time
    tasks[i].start()
for i in range(n): # wait all tasks to finish
    tasks[i].join()

dt = time.time() - start_time
print(f"{round(dt, 3)} sec elapsed")

2025年4月2日 星期三

使用 python 實現 chebyshev 多項式及內插法

不囉唆, 詳如以下代碼:

import numpy as np
def Cp(x, n): # 快速疊代法, 計算 1st kind Chebyshev 多項式
  if (n == 0):
      return 1
  if (n == 1):
      return x
  pk_1 = 1
  pn_1 = x
  k = 1
  while k < n :
    pk = pn_1 * x * 2  - pk_1
    pk_1 = pn_1
    pn_1 = pk
    k += 1      
  return pn_1

test_f = lambda x: np.exp(-x*x) # 測試函式
Ln    = 20
px    = [0.0] * Ln
py    = [0.0] * Ln
theta = [0.0] * Ln
for k in range(Ln) :
    theta[k] = np.pi * (k + 0.5) / Ln;# θₖ = np.pi * (k + 0.5) / Ln
    px[k] = np.cos(theta[k]);# pxₖ = cos(θₖ)
    py[k] = test_f(px[k]);# pyₖ = f(pxₖ) to be used in Chebyshev Interpolation  

def Ci(i): # Coefficient, bind with pyₖ, θₖ, Ln
  sum = 0
  for k in range(Ln) :
    sum += py[k] * np.cos(i * theta[k])
  return sum * 2 / Ln # 2/n * Σₙf(pxₖ)*Tₖ(pxₖ), k = 0, 2, ... n - 1

def Chebyshev_interpolation(t): # Chebyshev Interpolation Polynomials
    sum = Ci(0) / 2;# Σₙ Cₖ*Tₖ(x) - C₀/2 = Σₖ Cₖ*Tₖ(x) + C₀/2, k = 1, 2, ... n-1, C₀*T₀(x) = C₀
    k = 1
    while k < Ln :
        sum += Ci(k) * Cp(t, k)
        k += 1
    return sum

for k in range(Ln) :
    xk = px[k] + 0.1
    c  = test_f(xk) # 實際值
    h  = Chebyshev_interpolation(xk)# Chebyshev 合成值
    print(f"x={xk}, 內插={h}, 實際值={c}, 誤差 = {h-c}") 

2025年3月20日 星期四

用 python 實現定積分 ∫ₐᵇ f(t)dt

看了一些文章後, 自己手動寫了一些簡單的程式, 實現各種定積分的方式
import numpy as np
def Lp(x, n) : # evaluate order n-1 Legendre polynomials at x
  if (n == 0) :
    return 1.0
  if (n == 1) :
    return x
  pn_1, pk_1 = x, 1.0 # 疊代初始化, 因為 n > 1, 所以至少疊代一次
  k = 1 # 此刻從 k 開始, 直到 n - 1
  while k < n :
    pn_1, pk_1 = (pn_1*x*(2 * k + 1) - pk_1*k) / (k + 1), pn_1
    k += 1 # # 因為 k=n-1 所以 n=k+1, 2*n-1 = 2*(k+1)-1 = 2*k+1
  return pn_1  # (Lp(x, k)*x*(2*n-1) - Lp(x, k-1)*k) / n, k = n - 1

def d_Lp(x, n) : # derivative of order n-1 Legendre Polynomials at x
  if (n == 0) :
    return 0.0
  if (n == 1) :
    return 1.0;# LP′ₙ(x) = (−LPₙ(x)*x + LPₖ(x)) * n / (1−x*x), k=n-1
  return (Lp(x, n - 1) - Lp(x, n) * x) * n / (1.0 - x*x)
# Multiple root finder algorithm for Legendre polynomial: https://publikacio.uni-eszterhazy.hu/3009/1/AMI_33_from3to13.pdf
def by_newton(f, a=1.0, b=2.0, n=10):
  def newton_raphson(n, eps=1e-16): # using: xₖ = xₖ - f(xₖ) / [f'(xₖ) - f(xₖ) Σₖ 1/(xₖ - xᵢ)]
    e = np.cos(np.array([np.pi*(k + 0.5)/n for k in range(n)])) #initial guess
    for k in range(n) : # find all roots by newton raphson method
      xk = e[k]
      iteration = 0
      while (iteration < 1000) :
        iteration += 1
        f = Lp(xk, n)
        temp = f if (f > 0) else -f
        if (temp < eps): # 收斂
          break
        sum_r = 0.0
        for j in range(k) :# sum_r = Σₖ 1/(xₖ - xᵢ) to remove previouse root
          delta = xk - e[j]
          temp = delta if (delta < 0) else -delta
          if (temp < eps) :
            continue# skip singular value!
          sum_r += 1.0 / delta      
        dx = f / (d_Lp(xk, n) - f * sum_r)
        temp = dx if (dx > 0) else -dx
        if (temp < eps) : # 收斂
          break
        xk -= dx # xₖ = xₖ - f(xₖ) / [f'(xₖ) - f(xₖ) Σₖ 1/(xₖ - xᵢ)]
      e[k] = xk # final root update
    xi = [e]
    derivative = d_Lp(xi[0], n)
    xi.append(2 / (derivative*derivative*(1 - xi[0]*xi[0])))
    return np.array(xi)
  xw = newton_raphson(n)
  scale = (b - a) / 2.0 # linear transform tx: bias + scale *  1  = b => scale = (b - a) / 2
  bias  = (b + a) / 2.0  # linear transform tx: bias + scale *(-1) = a => bias  = (b + a) / 2  
  tx = xw[0] * scale + bias # x -> tx
  sum = f(tx).dot(xw[1])
  return sum * scale

def by_jacobi(f, a=1.0, b=2.0, n=10):
  def Jacobi_method(n, eps=1e-16): # using: xₖ = xₖ - f(xₖ) / [f'(xₖ) - f(xₖ) Σₖ 1/(xₖ - xᵢ)]
    J = np.zeros((n, n))
    d = len(J) - 1 # to fill into the jacobian tridiagonal matrix, trace = 0, and it is a symmetry matrix
    for k in range(d): # fill
      m = k + 1
      J[k][m] = m / np.sqrt(4.0 * m * m - 1.0)
      J[m][k] = J[k][m]
    e = np.linalg.eigvals(J) # nxn jacobi matrix, solve eigenvalues     
    xi = [np.sort(e)] # eigenvalue is same as root of the order n-1 Legendre polynopmial  
    derivative = d_Lp(xi[0], n)
    xi.append(2 / (derivative*derivative*(1 - xi[0]*xi[0])))# weight relative eigenvalue
    return np.array(xi)
  xw = Jacobi_method(n)
  scale = (b - a) / 2.0 # linear transform tx: bias + scale *  1  = b => scale = (b - a) / 2
  bias  = (b + a) / 2.0  # linear transform tx: bias + scale *(-1) = a => bias  = (b + a) / 2  
  tx = xw[0] * scale + bias # x -> tx
  sum = f(tx).dot(xw[1])
  return sum * scale

def by_trapezoid(f, a=1.0, b=2.0, n=50): # integral with the trapezoid method, 使用 梯形面積=(上底 + 下底)/2 積分
  x = np.linspace(a, b, n) # total n pints include a, b
  y = f(x) # total n
  n -= 1   # split to n - 1 interval
  delta_x = (b - a) / n
  sum = y[1:n].sum() + (y[0] + y[n]) / 2.0
  return sum * delta_x

def by_simpson(f, a=1.0, b=2.0, n=50): # (b-a)/3 Σ[f(a) + 4f(a+h) + 2f(a + h) + 4f(a+2h) + 2f(a+3h)  ... + f(b)]
  if n % 2 == 1:
    n += 1
  dx = (b - a) / n
  ddx = dx + dx # double dx
  x4 = a + dx   # 2nd term * 4
  x2 = a + ddx  # 3rd term * 2
  sum = f(a) + f(b) # head + tail
  for i in range(1, n - 2, 2) : # exclude head and tail
    sum += f(x4) * 4 + f(x2) * 2
    x4 += ddx # next
    x2 += ddx # next    
  sum += f(x4) * 4 # last one
  return sum * dx / 3
 
f = lambda x: np.exp(-x**2)
a = 0.0
b = 10.0
n = 15
anser  = np.sqrt(np.pi) / 2
jacobi = by_jacobi(f, a, b, n)
newton = by_newton(f, a, b, n)
trapezoid = by_trapezoid(f, a, b, n)
simpson = by_simpson(f, a, b, n)
print(f"∫ :\tjacobi={jacobi}  \t, newton={newton} \t, trapezoid={trapezoid}\t, simpson={simpson}\t, compare to {anser}")
print(f"Δ :\t {jacobi - anser} \t, {newton - anser}\t, {trapezoid - anser}  \t, {simpson - anser}")


2025年3月16日 星期日

關於內插多項式

x-y 平面上, 相異 2 點 (xₖ, yₖ), k = 0, 1 可以畫成 一條直線(也可以看成是一次多項式 y = a₀ + a₁x), 相異3點不在同一條直線上就可以形成一個拋物線(可以看成是二次多項式  y= a₀ + a₁x + a₂x²), 相異 4 點但不在同一條拋物線上則能形成一個三次曲線(可以看成是三次多項式 y = a₀ + a₁x + a₂x² + a₃x³) , 以此類推, 相異 n 點就可以形成一個 n-1 次曲線, 或者說是 n-1 次多項式 y = Σₙ aₖxᵏ, k = 0 , 1 ,2 , ..., n-1 .數學上有個著名的 Lagrange Interpolation Polynomials, 網上翻譯成"拉格朗日內插多項式", 實際上就是利用 n 點的座標, 推算出該 n-1 次的多項式, 內插產生任何一點的函數值, 這個合成的插值多項式實際上等同原始多項式. 它與原始多項式不偏不移, 不折不扣, 一模一樣(數學上稱為 exact), 只是表達方式不同 f(t) = Σₙ aₖtᵏ, 這裡列出Lagrange Interpolation Polynomials 的另類表達式, 假設 (xₖ, yₖ)  是已知的座標點共有 n 個 {x₀, y₀, x₁, y₁, x₂, y₂, ..., xₖ, yₖ} , 則 :
            f(t) = Σₙⱼ [yⱼ * Πₙₖ(t - xₖ)/(xⱼ - xₖ)]  其中 j != k, k = 0, 1, ,2, ..., n-1, j = 0, 1, 2,..., n-1
上面式子中 Σₙ 是 n 項總和, Πₙ 是 n 項總乘積, 我們只要將 t 用 xₖ 帶進去, 就會得到 f(t) = f(xₖ) = yₖ, 就能體會它就是原始多項式無誤, 用這個表達式用意是不需用矩陣運算求出係數 aₖ, 也能推斷出函數多項式的任一點函數值, 其實如果將整個 Lagrange Interpolation Polynomials 仔細展開就可以看出 aₖ 等於是 {x₀, y₀, x₁, y₁, x₂, y₂, ..., xₖ, yₖ} 所組成的函數值, 而 {x₀, y₀, x₁, y₁, x₂, y₂, ..., xₖ, yₖ} 都是已知的常數. 可以參考文章:
https://math.libretexts.org/Courses/Angelo_State_University/Mathematical_Computing_with_Python/3%3A_Interpolation_and_Curve_Fitting/3.2%3A_Polynomial_Interpolation
底下用 c++ 驗證一下結果:
#include<stdio.h>
double Lip(double *x, double *y, int n, double t) {// Lagrange Interpolation Polynomials
    auto L = [x, n](int j, double t){
        double pi = 1.0;
        for (int k = 0; k < n; k ++) {// exclude (x[j] - x[k]) term
            if (k == j) continue;
            pi *= (t - x[k]) / (x[j] - x[k]);
        }
        return pi;
    };
    double f = 0;
    for(int j = 0; j < n; j ++) { // Lip(t) = Σₙ (yⱼ * Lⱼ(t)), j = 0, 1, 2, ..., n-1
        f += y[j] * L(j, t);
    }
    return f;
} // f(t) = Σₙ [yⱼ * Πₙ(t - xₖ)/(xⱼ - xₖ)], k = 0, 1, 2, ..., n-1

double *polynomials(double *x, int n) { // order n-1 polynomials
    double *f = new double[n]();
    for (int i = 0; i < n; i ++) {// f(x) = 1 + x + x^2
        f[i] = 2 * x[i];// + x[i] * x[i];
    }
    return f;
}
int main() {
    double x[3] = {1, 2, 3};
    int n =  sizeof(x)/sizeof(double);
    double *y = polynomials(x, n);
    printf("ans = %f\n", Lip(x, y, n, 1.2)); // interpolation at x = 1.2
    delete [] y;
    return 0;
}

2025年3月15日 星期六

用 c++ 寫個簡單的 bisecton 方法找出方程式的實數根

數學上有個著名的多項式稱為 Legendre polynomial, 該方程式的根及權重可以用來算出其它方程式的定積分值,底下簡單利用雙端夾擊法(英文是 bisection method)找出 Legendre 多項式的根,之後利用這些參數快速估算出其他方程式的定積分,例如: 底下算出 10 階 Legendre 多項式的參數(根及權重), 用這些參數推算出 ∫(2*x + 3/x)²dx  定積分值,還蠻貼近的. 可以用 python 搭配 scipy 下指令 scipy.integrate.quad(y, 1, 100) 驗證結果, 其中 y = lambda x: (2*x + 3/x)**2
// quad.cpp
#include <stdio.h>
#include <math.h>
double Lp(double x, int n) {// 快速疊代法, order n-1 Legendre polynomial
  if (n <  0) return 0; // Invalid order
  if (n == 0) return 1; // p0 = 1
  if (n == 1) return x; // p1 = x
  double pk_1 = 1;// 前一刻初始值 Lp(x, k - 1)
  double pn_1 = x;// 此刻初始值   Lp(x, k)
  int k = 1; // 此刻, begin to evaluate order n-1 Legendre polynomial
  do {  // pk_n = (pk*x*(2*n-1)-pk_1*k)/n, k=n-1 => n=k+1, 2*n-1=2*(k+1)-1=2*k+1
    double pk = (pn_1 * x * (2 * k + 1)  - pk_1 * k) / (k + 1);// 下一刻 pk 值
    pk_1 = pn_1;// 下一刻 pk_1 疊代
    pn_1 = pk;  // 下一刻 pn_1 疊代
  } while (++ k < n); // upto n => order n - 1
  return pn_1;// final interation of order n-1 Legendre polynomial
}
double d_Lp(double x, int n) { // derivative of order n-1 Legendre Polynomial
  if (n <= 0) return 0;
  if (n == 1) return 1;// LP′ₙ(x) = (− x*LPₙ(x) + LPₖ(x)) * n / (1 − x*x), k = n-1
  return (Lp(x, n - 1) - Lp(x, n) * x) * n / (1.0 - x*x);
}
double Lp_find_root(double left, double right, int nth,int iteration=1000, double eps=1e-16) {
  auto LPn = [nth](double x){ return Lp(x, nth); }; // 綁定 Lp(nth, .) 函式
  if (LPn(left)  == 0) return left ;// 先測左邊界, 若函數值等於0, 毫無懸念, 一定是根
  if (LPn(right) == 0) return right;// 再測右邊界, 若函數值等於0, 毫無懸念, 一定是根
  auto zero_cross = [LPn](double l, double r) { return LPn(l) * LPn(r); };// 再綁定上面的 LPn(.) 函式
  double product = zero_cross(left , right);
  if (product > 0) return 2; // 當左右邊界, 正負符號相同, 不可能有根
  double root = 0;   // Lp 函式的根介於 -1 到 1 之間  
  int step = 0; // 開始疊帶, to find root of Legendre Polynomials from left to right step by step
  double pre_root = 0;
  while (step ++ < iteration) {// zero cross 可以確認中間有否有交點 {0}, 當一邊是正, 另一邊是負, 乘積是負的, 必有根
    root = (left + right) / 2; // 左右兩邊夾擊取中點當作根
    double f = LPn(root);
    if (f < 0) f = -f; // 函數值取絕對值
    if (f < eps) break;// 勉強找到根了
    double temp = pre_root - root;// 前後根差異
    pre_root = root;
    if (temp < 0) temp = -temp; // 取絕對值
    if (temp < eps) {// todo: 尚可接受
      break;
    }
    product = zero_cross(left, root);// 待決定的根與左邊界, 算出零交越值
    if (product > 0) left = root; // 若與左邊界正負符號相同, 表示根在右邊,換掉左邊界, 下次再試
    else if (product < 0) right = root; //  與左邊界符號不同, 確認有零交越, 換掉右邊界, 下次再試
  }
  return root;// 介於 left 與 right 之間的根
}
double *Lp_solver(int nth = 10) {
  static double xi[1000 * 2];// todo: validate n
  for (int i = 0; i <= 2 * nth; i++) xi[i] = 0; // clear all data first
  int k = 0;
  double step = 1e-3;
  for (double x = -1.0; x <= 1.0; x += step) { // step by step
    double root = Lp_find_root(x, x + step, nth); // find root between x and x + steps
    if (root > 1) continue;
    double derivative = d_Lp(root, nth);
    xi[k] = root;// position of x
    xi[nth + k ++] = 2 / (derivative*derivative*(1 - root*root));// weight of w
  }
  return (k > 0) ? xi : nullptr;
}
double integral_quad(double f(double), double a, double b, int nth = 10) {
    static double *xi;
    static int Ln;
    if (xi == nullptr || Ln != nth) {
        Ln = nth; // reset Ln
        xi = Lp_solver(Ln);// solve once
    }
    double *wi = xi + Ln;
    double scale = (b - a) / 2; // linear transform xd: bias + scale *  1  = b , scale  = (b - a) / 2
    double bias  = (b + a) / 2; // linear transform xd: bias + scale *(-1) = a , bias = (b + a) / 2
    double sum = 0;
    for(int i = 0; i < Ln; i ++) {
        sum +=  f(xi[i] * scale + bias) * wi[i];
    }
    double area = sum * scale;
    return area;
}
int main() {
  double area = integral_quad([](double x) { // f(x) = (2*x + 3/x)²
      double y = 2*x + 3/x;// 要避開 x = 0
      return y * y;
    },
    1, 100
  );
  printf("Area = %f\n", area);
}
後記: 找方程式的根有很多種方法, 例如知名的 newton raphson 法也可以迅速找到根, 只不過算出全部的根需要用點技巧. 最近玩 xAI(網址是 http://grok.com )時, 我順便問一下如何解 Legendre polynomial 的根, 它給出了我蠻意外的答案, 他用了一個 tridiagonal matrix (只有3重對角線上有值, 其餘為零)的對稱型方陣, 這個矩陣 J 是 n*n Jacobian 方陣, 在正對角線上的值全為 0, 也就是說  trace 等於 0, 換句話說全部 eigenvalues 加起來等於 0, 這是一個3重對角型對稱方陣(詳細如下列程式所述), 只要求出該矩陣的 eigenvalues 就是 n 階 Legedre polynomial 的根, 底下我用  python 語法來解 5x5 矩陣特性方程式的根(eigenvalue), 還真的與 5 階 Legedre 多項式的根一模一樣. 只不過浮點運算稍有誤差, 接近 +- 1e-17 的值應當視為 0:
    import numpy as np
    n = 5
    J = np.zeros((n,n))
    d = len(J) - 1
    for k in range(d):
        m = k + 1
        J[k][m] = m / np.sqrt(4.0 * m * m - 1.0)
        J[m][k] = J[k][m]
    e, v = np.linalg.eig(J) # 解出方陣的 eigenvalues 及 eigenvectors
    print(np.sort(e)) # 只列出 eigenvalues 根
有了根之後, 權重(weight)自然就容易算出來,  至於為何會如此呢?  The characteristic polynomial of J​, det⁡(J − λI) turns out to be the Legendre polynomial P(λ), 這句話我能理解 eigenvalue 是矩陣特性方程式的根, 但它是如何與 Legendre polynomial 產生連結的呢? 我還無法理解. 也許要上高深一點線性代數理論才有辦法明瞭, 總之要算出 500 階以上的 Legendre 多項式的根就變得容易多了. 底下是 xAI 詳細回答:
     https://grok.com/share/bGVnYWN5_c43a2f4c-6290-400d-8834-ab6b5dd5bd1e


2025年3月11日 星期二

使用 python3 autograd 及 numpy 自定一個微分方程式

from autograd import elementwise_grad as grad
from autograd.extend import defvjp, primitive
import numpy as np

# 定義函式原型, 輸入資料型態必須是 np.array(.) 才能在 autograd 內運算
@primitive
def polynomial_f(x): # primitive 只能用 def, 不能用 lambda, 用來定義 forward function
    return x**3 # x³

# defvjp(polynomial_f, lambda o, x : (lambda g: 3*x**2))
#定義微分的 backward function, 需要將矩陣乘上微分方程
def grad_f(o, x): # 可以直接回傳 lambda, o 是 f(x) 的輸出, x 是 f(x) 輸入
    def derivative(_): # 綁定 x
        return 3*x**2
        # return np.full(x.shape, _) * 3*x**2 # 綁定 x, _
    return derivative
defvjp(polynomial_f, grad_f) # 將原型與微分方程綁定, 兜在一起

# 呼叫 autograd 的 grad function, 定義 n 階微分方程(order-n derivative): f'ⁿ(x) = dⁿf(x)/dx
df_n = lambda f, n = 1: df_n(grad(f), n - 1) if n > 1 else grad(f)
x = np.array([1, 2, 3, 4, 5])    # 測試 x 座標點, x 當成一組向量
print(f"f(x)   = x³  : {polynomial_f(x)},\tx = {x}")           # f(x) = x³
print(f"f'(x)  = 3x² : {df_n(polynomial_f)(x)   },\tx = {x}")  # f(x) 1 階微分f'(x)  = 3x²
print(f"f²'(x) = 6x  : {df_n(polynomial_f, 2)(x)},\tx = {x}")  # f(x) 2 階微分f"(x)  = 6x
print(f"f³'(x) = 6   : {df_n(polynomial_f, 3)(x)},\tx = {x}")  # f(x) 3 階微分f"'(x) = 6
print(f"f⁴'(x) = 0   : {df_n(polynomial_f, 4)(x)},\tx = {x}")  # f(x) 4 階微分f""(x) = 0

2025年3月10日 星期一

使用 python autograd 驗證 Gradient Decent 演算法

# test_lce.py
from autograd import elementwise_grad as grad
import autograd.numpy as auto_np
import matplotlib.pyplot as plt
import numpy as np
import tqdm
ln_  = lambda v: auto_np.log(v) # ln(v): natural log function
sum_ = lambda v: auto_np.sum(v) # Σ(v): summation function
sigmoid_ = lambda x: 1/(1 + auto_np.exp(-x))# sigmoid function = 1/(1 + exp(-x))
predict_ = lambda x, w: auto_np.dot(x, w) # forward x into the neural network w to get output
probability = lambda x, w: sigmoid_(predict_(x, w))
Y1 = np.array([1, 0, 0, 0]) # 期望值輸出(機率), 使用 one hot encode
X1 = np.array([[0.52,  1.12,  0.77],
               [0.88, -1.08,  0.15],
               [0.52,  0.06, -1.30],
               [0.74, -2.49,  1.39]]) # X1 有 4 個訓練樣本(= 4 rows), 每個樣本有3個特性組成一個列向量
W1 = np.array([0.0, 0.0, 0.0]) # 訓練參數對應的權重 weight 期望達成輸出 Y1 = [1 0 0 0]
def logistic_crosss_entropy(W, X, P): # W, X, P 都是矩陣, LCE = -Σ P*ln(Q), P: one hot encode, element ∈ {0, 1}
    length = X.shape[0]
    if length == P.shape[0] and W.shape[0] == X.shape[1] :
        Z = predict_(X, W) # predict output
        lce = P*ln_(1 + auto_np.exp(-Z)) + (1 - P) * ln_(1 + auto_np.exp(Z))
        return sum_(lce) / length
gradient_Loss = grad(logistic_crosss_entropy) # ∇L(w, x, y) = ∂L(w, x, y)/∂w => loss L(w) focus on w
logger = []
print(f"訓練前 lce loss:{logistic_crosss_entropy(W1, X1, Y1)},  輸出機率: {probability(X1, W1)}")
for iteration in tqdm.tqdm(range(1000)):
    W1 -= 0.01 * gradient_Loss(W1, X1, Y1) # learning rate = 0.01, 1 batch (4 samples), use GD optimizer
    logger.append([iteration, logistic_crosss_entropy(W1, X1, Y1)]) # 使用訓練完後的 W1 估算 LCE
print(f"訓練後 lce loss:{logistic_crosss_entropy(W1, X1, Y1)},  輸出機率: {probability(X1, W1)}")
if len(logger) > 0: # plot figure for the data in logger
    logger = np.array(logger).T
    plt.plot(logger[0], logger[1], color="r", label="Logistic Cross Entropy")
    plt.xlabel("epochs")
    plt.ylabel("LCE")
    plt.title("Training")
    plt.legend() # to show the multi label
    plt.show()

備註:
 sigmoid = 1/(1 + exp(-z))
 logistic_crosss_entropy LCE = -Σ P*ln(Q)
 z = x.dot(w)
 Q = sigmoid(z) = 1/(1 + exp(-z))
 element of P ∈ {0, 1}
 loss mean = sum_(- P*ln_(Q) - (1 - P)*ln_(1.0 - Q)) / length
 LCE = - P*ln_(Q) - (1 - P)*ln_(1.0 - Q)
     = - P*ln_(1/(1 + exp(-z))) - (1 - P)*ln_(1.0 - 1/(1 + exp(-z))
     = P*ln_(1 + exp(-z)) + (1 - P)*ln_((exp(-z) + 1)/exp(-z))
     = P*ln_(1 + exp(-z)) + (1 - P)*ln_(1 + 1/exp(-z))
     = P*ln_(1 + exp(-z)) + (1 - P)*ln_(1 + exp(z))

2025年3月9日 星期日

簡單測試 python asyncio 的寫法

# test_async.py
import asyncio
wait_task_finish = True
async def task_run(_future_obj_, k):
    print(f"task {k} running ...")
    _future_obj_.set_result(k + 100)
    await asyncio.sleep(3)    
    print(f"task {k} finish.")
    return k

async def async_tasks(k):
    obj_list=[]
    if k > 0:
        print(f"begin to create {k} tasks ...")
        task_list = []
        for i in range(k):
            obj_list.append(asyncio.Future())
            task_list.append(asyncio.create_task(task_run(obj_list[i], i)))
        if wait_task_finish:
            print(f"Wait all tasks finish...")
            for _task_ in task_list:
                result = await _task_
                print(f"task {_task_} return {result}")
        else:
            await asyncio.sleep(1) # if sleep time is not enough, task_run may not be finished
    print(f"async_tasks finish.")
    return obj_list

print(f"asyncio.run ...")
result = asyncio.run(async_tasks(4))
print(f"print finish result ...")
for _obj_ in result:
    if _obj_.done():
        print(_obj_.result())
    else:
        print(f"{_obj_} is not set_result!")

可以更改 wait_task_finish 為 True 或 False, 驗證執行結果: python3  test_async.py

2025年3月8日 星期六

用泰勒展開式逼近一個 cos 函數

import autograd as auto_grad
import autograd.numpy as audo_np
import matplotlib.pyplot as plt

def taylor_bind(f, nth = 15, a = 0.0):
    def g(x) : # order-n taylor series, f(x) = Σₙ[fⁿ(0) * xⁿ / n!]
        if nth < 0:# todo
            return 0
        elif nth == 0:# todo
            return 1
        elif nth == 1:
            return f(a)
        taylor_sum = f(a) # initial value when order-n > 1
        d_f = auto_grad.elementwise_grad(f) # inital derivative term
        xpow = x - a # inital power term
        n_ = 1 # inital factorial term
        k = 1 # iteration from 1, upto n
        while True : # iteration begin, 開始疊代
            taylor_sum += d_f(a) * xpow / n_
            k += 1 # pipe next
            if k == nth: # no need to run while upto nth
                break
            d_f = auto_grad.elementwise_grad(d_f) # next derivative of f
            xpow *= (x - a) # next power of (x - a)
            n_ *= k # next factorial
        return taylor_sum
    return g # function can be run in the future

x0 = audo_np.linspace(-7, 7, 500)
y1 = audo_np.cos
y2 = taylor_bind(y1)
plt.plot(x0, y2(x0), color="g", label="taylor_bind")
plt.plot(x0, y1(x0), color="r", label="cos")
plt.xlabel("x")
plt.title("Taylor series fit")
plt.legend() # to show the multi label
plt.show()

2025年3月7日 星期五

使用 python3 的 autograd package 產生 n-階微分方程式並繪圖

1. 先安裝 python3 的 python3-venv 虛擬環境, 並安裝到目錄
    sudo apt install python3-venv
    cd ~
    python3 -m venv venv
2. 進入 python3 虛擬環境, 安裝 autograd
    cd ~
    source venv/bin/activate
    pip install autograd
3. 編輯以下測試檔:   xed ~/test_grad.py
from autograd import elementwise_grad as egrad
import autograd.numpy as audo_np
import matplotlib.pyplot as plt
tanh = lambda t: (1.0 - audo_np.exp((-2 * t))) / (1.0 + audo_np.exp(-(2 * t)))
derivative_ = lambda n, f: derivative_(n - 1, derivative_(1, f)) if n > 1 else egrad(f) # dⁿf(x)/dx
#
x = audo_np.linspace(-7, 7, 500)
y0 = tanh(x)
y1 = derivative_(1, tanh)(x)
y2 = derivative_(2, tanh)(x)
y3 = derivative_(3, tanh)(x)
y4 = derivative_(4, tanh)(x)
#
plt.plot(x, y0, x, y1,  x, y2, x, y3, x, y4)
plt.show()

4. 啟用虛擬環境, 執行看看:
    cd ~
    source venv/bin/activate
    python3 test_grad.py

p.s.如果不想安裝 autograd, 可以上官網把整個目錄下載回來:  https://github.com/HIPS/autograd

2025年3月4日 星期二

學習類神經網路

 參考影片 

1. https://www.youtube.com/watch?v=ErnWZxJovaM&list=PLtBw6njQRU-rwp5__7C0oIVt26ZgjG9NI

2. https://www.youtube.com/watch?v=BHgssEwMxsY

類神經網路(Neural Network)通常有一個輸入層及一層輸出層, 中間有一個以上的隱藏層,當隱藏層大於 1 時稱為 deep neural network (DNN).層與層之間透過神經元(neuron)互相連接,輸入層神經元收到輸入資料後透過權重將資料往內層擴散傳播,隱藏層的神經元將資料收集加總再串接 activation function 把資料映射後透過權重把資料繼續往內層擴散, 終端輸出層則是加總前一隱藏層的擴散資料再串接 activation function 後輸出數值. 最後透過 backpropagation 演算法訓練出模型內的參數值. 但利用損失函數導出偏微分函數是一件很複雜的事, 還有一種方式是透過 auto gradient computational graph 算出偏微函數值, 讓訓練程序變得簡潔, 可以參考 micrograd 網站 https://github.com/karpathy/micrograd ,  或是 teenygrad 的網站 https://github.com/tinygrad/teenygrad/activity 以及 tinygrad  網站 https://github.com/tinygrad/tinygrad , 內部有完整實現出 autograd 方式. 其中 micrograd 原始碼引擎不到 100 行簡單扼要, teenygrad 不到 1000 行, 還另外實現出 Tesor 及 Optimizer 運算法, 而 tinygrad 則可以利用 GPU 來加速運算. 讓 python 不用安裝 pytorch 也能寫出簡單的類神經網路運算法

使用 python 簡單實現多 cpu 平行處理

 import multiprocessing as mp import time def iso_task(k):     print(f"task {k} @{time.time()} sec: sleep for 1 second")     time....